Калининград (4012)72-03-81
Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49
Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курган (3522)50-90-47
Курск (4712)77-13-04
Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Ноябрьск(3496)41-32-12

Омск (3812)21-46-40
Орел (4862)44-53-42 Оренбург (3532)37-68-04
Пенза (8412)22-31-16 Пермь (342)205-81-47 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саранск (8342)22-96-24 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56

Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97
Тверь (4822)63-31-35 Тольятти (8482)63-91-07
Томск (3822)98-41-53
Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Ульяновск (8422)24-23-59 Уфа (347)229-48-12

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НА Электромоторные приводы SQV91

For PICVs (pressure independent combi valves) VPF43.., VPF44.. and VPF53..

- SQV91.. Operating voltage AC/DC 24 V ,

Positioning signal 3 -position, DC 0-10 V, DC 4-20 mA

- Position feedback and selection of flow characteristic
- Manual adjuster, position and status indication (LED)
- Selectable positioning times 40-240 seconds
- Fail-safe function (PICV open/closed)
- Selection of acting direction
- Optional functional extension: Auxiliary switch, potentiometer, and AC 230 V module

SIEMENS

- Direct mounting on PICVs
- UL Listed

Type summary

Type	Stock No.	Stroke	Pos. force	Operating voltage	Positioning signal	Spring return time	Pos. time 2) 20 mm		Fail-safe 40mm
fQunction									

AC 230 V requires accessory ASP1.1.
${ }^{2)}$ The positioning time can be selected using the DIL switch, see page 7 .

Electrical accessories

Type	Auxiliary switch pair ASC10.42	Potentiometer ASZ7.6/1000	AC 230 V module ASP1.1
Stock number	S55845-Z137	S55845-Z136	S55845-Z138
	Max. 2		
SQV91P30	Max. 1		
SQV91P40	Max. 1		

Spare parts, rev. number

No spare parts available.
Revision numbers, see page 13.

Ordering

Example

Delivery
Actuator, PICV, and accessories are individually packed for delivery.

Equipment combination

Valve type		DN	PN class	$\begin{gathered} \text { Flow } V_{100} \\ {\left[\mathrm{~m}^{3} / \mathrm{h}\right]} \end{gathered}$	Data sheet
	PICVs				
VPF43..	Flange	50	16	2,3.. 25	N4315
		65		4,4...35	
		80		5,3... 43	
		100		12,1... 90	
		125		18,5... 135	
		150		25,6... 195	
		200		95... 280	
VPF44..	Flange	50	16	2,9...26,2	A6V11466366
		65		4...35,8	
		80		5,5..47,9	
VPF53..	Flange	50	25	2,3.. 25	N4316
		65		4,4...35	
		80		5,3... 43	
		100		12,1... 90	
		125		18,5... 135	
		150		25,6... 195	
		200		95... 280	

1 Status and acting direction indication (LED)
2 Housing cover
3 Entry points for cable glands
4 Manual adjuster
5 Indication of upper end position
6 Valve stem coupling
7 Indication of lower end position
8 Valve neck coupling

Auto mode

Manual mode

Initialization, automatic coupling, calibration

3-position control signal

The manual adjuster is disengaged.

The manual adjuster allows for manually setting the position. The motor is switched off when the manual adjuster is engaged. The fail-safe function (spring return) is reactivated after the manual adjuster is disengaged, and the actuator travels again to the set position without calibration.
The actuator remains in this position without active operating voltage for as long as the manual adjustor is engaged.

The actuator independently calibrates itself for each type of connection. Initialization occurs as soon as operating voltage is supplied for the first time and the waiting period ends. The actuator travels to the lower stop of the PICV, thus enabling automatic coupling with the valve stem. It then travels to the upper stop, records and stores it. Recalibration can be manually triggered any time, see "Recalibration", page 5.

The PICV can travel to any position by supplying voltage to terminal G1 or G2 as well as L1 ${ }^{1)}$ or L2 ${ }^{11}$.

- Voltage on G2, L2:
- Voltage on G1, L1:
- No voltage on G1 and G2: or L1 and L2:

Actuator stem retracts, PICV opens. Actuator stem extends, PICV closes. Actuator stem stays at the applicable position.

[^0]
Changeover of acting direction

Direct acting
Reverse acting

Notes

Positioning signals Yu and Yi
DC 0-10 V (Yu)
DC4-20 mA (Yi)
Direct acting

Reverse acting

Acting direction

Direct acting
Reverse acting

The acting direction of the stroke direction can be reversed by exchanging connections G1 and G2 or L1 and L2.

Positioning signal OPEN on G2, L2. Positioning signal CLOSED on G1, L1.
Positioning signal OPEN on G1, L1. Positioning signal CLOSED on G2, L2.

- Do not use connection Yu (DC 0-10 V) and Yi (DC 4-20 mA).
- Positioning times can be selected, see "Positioning times", page 7.
- Valve characteristic curves "lin" or "log" cannot be selected.
- Position feedback U is activated after initialization/calibration.

Electronic motor shutdown is triggered in the end positions (valve stop or upon reaching maximum stroke) or by overload (no end switch).

The PICV can be driven to any position by connecting a continuous positioning signal Yu or Yi. The acting direction can be reserved (direct/reverse acting) by connecting operating voltage to G1 or G2:

Operating voltage AC/DC 24 V on G 1 or AC 230 V on L1

- Pos. signal to Yu, Yi increasing: Actuator stem retracts, PICV opens.
- Pos. signal to Yu, Yi decreasing: Actuator stem extends, PICV closes.
- Pos. signal to Yu, Yi continuous: Actuator stem remains in the respective pos.

Operating voltage AC/DC 24 V on G2 or AC 230 V on L2

- Pos. signal to Yu, Yi increasing: Actuator stem extends, PICV closes.
- Pos. signal to Yu, Yi decreasing: Actuator stem retracts, PICV opens.
- Pos. signal to Yu, Yi continuous: Actuator stem remains in the respective pos.

Position signal	Operating voltage	Actuator stem	PICV
Yu, Yi increasing	G1 to AC/DC 24 V L1 to AC 230 V	Retracts	Opens
Yu, Yi increasing	G2 to AC/DC 24 V L2 to AC 230 V	Extends	Closes

- The input with the higher value has priority when a positioning signal is available at both Yu and Yi .
- When using the AC 230 V module ASP1.1, the SQV..P can also be operated with a DC $0 \ldots 10 \mathrm{~V}$ or DC $4 \ldots . .20 \mathrm{~mA}$ positioning signal.
- The actuator travels to the applicable end position depending on the selected acting direction if Yu or Yi are interrupted:

Operating voltage to G1 or L1 Actuator stem extends.
Operating voltage to G2 or L2 Actuator stem retracts.

- Positioning times can be selected, see "Positioning times", page 7.
- Valve characteristic curves "lin" or "log" can be selected.
- Position feedback U is activated after initialization/calibration.
- Parallel operation with up to 5 actuators possible, see "Technical data", page 10.

Position feedback $\mathrm{U}(\mathrm{DC} 0 \ldots 10 \mathrm{~V}$) is always proportional to stroke H for the actuator. It is also active when using the AC 230 V module ASP1.1.

DIL switch	Flow characteristics	Position feedback U
$\mathrm{lin}=$ linear ${ }^{1)}$		
$\log =$ equal percentage, $\mathrm{n}_{\mathrm{gl}}=3$ (logarithmic normal)		
$\log =$ equal percentage, $\mathrm{n}_{\mathrm{gl}}=3$ (exponential normal)		

${ }^{1)}$ Factory setting

Fail-safe function

End position

Recalibration

The actuator travels to the applicable end position (the stem retracts or extends depending on the model) using the preloaded spring if operating voltage to terminal G or 21 is lost or shut down. In this case, the actuator's control function is locked for 45 seconds (both LEDs are green) to reach the end position at any rate. There is no recalibration. The reset positioning speed ensures that no pressure surges occur in the piping.

SQV91P30 Actuator stem retracted
SQV91P40 Actuator stem extended

PICV opened (V = 100\%).
PICV closed (V = 0\%).

Recalibration can be manually triggered any time.

1. Operating voltage is supplied.
2. Engage and disengage the manual adjuster twice within 4 seconds.
3. Both LEDs flash green.
4. Recalibration is successful when both LEDs are lit green.
5. Return to normal control function.

Notes - Position feedback U is inactive or corresponds to value " 0 ".

- The shortest possible runtime is initialized.
- Recalibration is valid only after the entire process is completed.
- Additional engaging the manual adjuster interrupts the process.

Blockade detection

The valve actuator indicates detected blockage by setting the feedback signal to 0 V after ca. 90 seconds. The actuator, however, tries to overcome the blockage during this period. Normal control function is reactivated if the blockage is overcome and position feedback U is once again available.

Response at the end positions

Status and acting direction indication (LED)

Blockade detection is always operational. In other words, the actuator demonstrates the following response at end positions H_{100} and H_{0} not only during initialization and calibration, but also during normal control operation:

1. The actuator travels to the end position; the LED is lit in the direction of travel.
2. It detects the end position; both LEDs are lit green.
3. It then briefly travels in the opposite direction; the LED is lit in the direction of travel.
4. It then returns to the end position; LED is lit in the direction of travel
5. It detects the end position; both LEDs are lit green.

This response is repeated with time intervals between travels increasing exponentially. The intervals are:

$$
25 \text { seconds }
$$

1 min 40 seconds
6 min 40 seconds
26 min
1 h 46 min 40 seconds
7 h 6 min 40 seconds
1 day 4 h 26 min 40 seconds
for the previous interval.

The status and acting direction indication consists of two green, lit LEDs.

Indication		Function
	- LED flashes green - LED flashes green	- Initialization. - Manual mode. - Delay after operating voltage is supplied, or the fail-safe function is triggered.
	- Steady green	Actuator stem retracts.
	- Steady green	Actuator stem extends.
	- Steady green - Steady green	End position reached.
	- LED flashes green	Blockage or foreign object detected during retraction.
	- LED flashes green	Blockage or foreign object detected during extension.
		No operating voltage

Frost protection thermostat

The actuators can be operated using a frost protection thermostat or temperature detector, see "Connection diagrams", page 11.

1 Status and acting direction indication (LED)
2 DIL switch
3 Connection terminals

DIL switch Positioning times

DIL switch
Flow characteristics

DIL switch	Speed	Positioning time ${ }^{1)}$	
		20 mm	40 mm
	$2 \mathrm{sec} / \mathrm{mm}$	$40 \mathrm{sec}^{2)}$	$80 \sec ^{2)}$
	$3 \mathrm{sec} / \mathrm{mm}$	60 sec	120 sec
	4,5 sec/mm	90 sec	180 sec
	$6 \mathrm{sec} / \mathrm{mm}$	120 sec	240 sec

${ }^{1)}$ Tolerance: $\pm 1 \mathrm{sec}$
${ }^{2)}$ Factory setting

The flow characteristics can be used only for connections with constant positioning signals DC $0 \ldots 10 \mathrm{~V}$ and DC $4 \ldots 20 \mathrm{~mA}$.

DIL switch	Flow characteristics	
	$\mathrm{lin}=\mathbf{l i n e a r}{ }^{1)}$	
	$\begin{gathered} \log =\text { equal percentage, } \mathrm{n}_{\mathrm{gl}}= \\ 3 \\ \text { (logarithmic normal) } \end{gathered}$	
	$\begin{gathered} \log =\text { equal percentage, } \mathrm{n}_{\mathrm{gl}}= \\ 3 \\ (\text { exponential normal }) \end{gathered}$	

${ }^{1)}$ Factory setting

Type Stock no.	ASC10.42 S55845-Z137	$\begin{aligned} & \hline \text { ASZ7.6/1000 } \\ & \text { S55845-Z136 } \end{aligned}$	ASP1.1 S55845-Z138
	Auxiliary switch pair	Potentiometer	AC 230 V module
	Switching points can be continuously adjusted between 0 and 100\%	$0 . .1000 \Omega$	AC 230 V to AC 24 V converter
Installatio n	Max. 1		Max. 1
	Max. 2		

See section "Technical data" (page 10) for more information.

Notes

Engineering

Mounting
Mounting instructions 7431908210 on mounting PICVs are included in the actuator's packaging. Mounting instructions for accessories are located in the respective packaging.

Accessories		Mounting instructions	
ASC10.42	S55845-Z137	M4833.1	7431908600
ASZ7.6/1000	S55845-Z136	M4833.2	7431908610
ASP1.1	S55845-Z138	M4833.3	7431908620

Commissioning

Maintenance

Recommendation

Recommendation

Repair

- Check the wiring and carry out a functional check as part of commissioning.
- Make or check the settings as per the plant diagram for auxiliary switches and potentiometers.

The actuators are maintenance-free.

- Regularly check functioning (trial) of actuators with safety functions.

When servicing the actuating device:

- Switch off both pump and operating voltage.
- Close the main shutoff valve in the piping.
- Release pressure in the pipes and allow them to cool down completely.
- Disconnect electrical connections from the terminals as needed.
- The actuator must be properly installed prior to recommissioning the valve.

Recommendation Trigger stroke calibration after servicing.

- There are no spare parts available; the entire actuator must be replaced.
- Removing the spring on the actuator is prohibited due to the high risk of injury.

Disposal

The device is considered electrical and electronic equipment for disposal in terms of the applicable European Directive and may not be disposed of as domestic garbage.

- Dispose of the device through channels provided for this purpose.
- Comply with all local and currently applicable laws and regulations.

The engineering data specified in section "Equipment combination" (page 2) are only guaranteed in connection with the Siemens valves listed.

When using the actuators together with third-party valves, correct functioning must be ensured by the user, and Siemens will assume no responsibility.

Technical data

	SQV..P..	
Power supply	Operating voltage $\text { With ASP1.1 AC } 230 \mathrm{~V} \text { module }$	AC $24 V \pm 20 \%$ DC $24 V \pm 15 \%$ $A C 230 V \pm 15 \%$
	Frequency	$50 \ldots 60 \mathrm{~Hz}$
	Fusing ac. DIN 57100 part 430 (supply lines)	6 A... 10 A slow
	Power consumption With ASP1.1 AC 230 V module	$\begin{aligned} & 20 \mathrm{VA} / 7,5 \mathrm{~W} \\ & 22 \mathrm{VA} \end{aligned}$
Function data	Positioning times 20 mm 40 mm Positioning force Nominal stroke Permissible medium temperature (valve fitted)	$\begin{array}{\|l\|} \hline 22 \mathrm{VA} \\ \hline 40 \mathrm{1}) / 60 / 90 / 180 \mathrm{sec} \\ 80 \mathrm{1}) / 120 / 180 / 240 \mathrm{sec} \\ \text { The positioning time depends on the DIL switch setting, } \\ \text { "Positioning times" (page 7) } \\ 1100 \mathrm{~N} \\ 20 \mathrm{~mm} / 40 \mathrm{~mm} / 43 \mathrm{~mm} \\ 1 \ldots .120^{\circ} \mathrm{C} \\ \hline \end{array}$
Signal inputs	Position signal Terminal G1, G2 Voltage Terminal Yu Voltage Terminal Yi Input impedance Power Input impedance	3-position AC $24 \mathrm{~V} \pm 20 \%$ DC $24 \mathrm{~V} \pm 15 \%$ AC $230 \mathrm{~V} \pm 15 \%$ DC $0 . . .10 \mathrm{~V}$ $\geq 100 \mathrm{k} \Omega$ DC 4... 20 mA 50Ω
Fail-safe function ${ }^{2)}$	Terminal G/21 SQV91P30 SQV91P40 Spring return time 20 mm 40 mm	Loss of operating voltage Actuator stem retracted, PICV fully open (100\%). Loss of operating voltage Actuator stem extended, PICV fully closed (0\%). $15 \mathrm{sec}^{3)}$ $30 \mathrm{sec}^{3)}$
Position feedback	Position feedback U $\begin{array}{r}\text { Load impedance } \\ \text { Load }\end{array}$	$\begin{aligned} & \hline \mathrm{DC} 0 \ldots 10 \mathrm{~V} \\ & >2.5 \mathrm{k} \Omega \text { res. } \\ & \text { Max. } 4 \mathrm{~mA} \\ & \hline \end{aligned}$
Connecting cable	Wire cross-sectional areas	0.75...1.5 mm², AWG 20...16 ${ }^{\text {4) }}$
	Cable entry	2 entry points $\mathrm{M} 20 \times 1$. 1 entry points $\mathrm{M} 16 \times 1.5$
Degree of protection	Housing from vertical to horizontal	IP 66 as per EN 60529
	Insulation class AC / DC 24 V With ASP1.1 AC 230 V module	As per EN 60730 III II
Environmental conditions	Operation Climatic conditions \quad Mounting location Temperature General Humidity (non-condensing)	IEC 60721-3-3 Class 3K5 Indoors (weather-protected) $0 \ldots 55^{\circ} \mathrm{C}$ $<95 \% \text { r.h. }$
	Transport Climatic conditions Temperature Humidity	$\begin{aligned} & \text { IEC } 60721-3-2 \\ & \text { Class } 2 \mathrm{~K} 3 \\ & -30 \ldots . .70^{\circ} \mathrm{C} \\ & \text { <95\% r.h. } \\ & \hline \end{aligned}$
	Storage Climatic conditions Temperature Humidity	$\begin{aligned} & \text { IEC } 60721-3-1 \\ & \text { Class } 1 \mathrm{~K} 3 \\ & -30 \ldots 65^{\circ} \mathrm{C} \\ & 5 . . .95 \% \text { r.h. } \\ & \hline \end{aligned}$
	Max. media temperature when mounted on PICV	$130{ }^{\circ} \mathrm{C}$
Norms and directives	Electromagnetic compatibility (Application)	For residential, commercial and industrial environments
	Product standard	EN60730-x
	EU Conformity (CE)	CE1T4833xx01 ${ }^{5)}$
	RCM Conformity	CE1T4833xx02 ${ }^{\text {5) }}$
	UL Listed	UL 873 23BA, 23FR, E75924 Identical to the authorized Listee's model numbers AVF234SF232U \& AVF234SF132U
Environmental compatibility	The product environmental declaration CE1E4833en ${ }^{5)}$ contains data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit, disposal).	

		SQV..P..
Dimensions	See "Dimensions" (page 13)	
Accessories	Potentiometer ASZ7.6/1000 $\begin{array}{r}\text { Voltage } \\ \text { Load }\end{array}$	$\begin{aligned} & 0 \ldots 1000 \Omega \pm 20 \% \\ & \text { AC / DC } 24 \mathrm{~V} \\ & <1 \text { W } \end{aligned}$
	Double auxiliary switch ASC10.42 Switching capacity	AC/DC 12...AC 230 V , 6 A resistive, 2 A inductive
	AC 230 V module ASP1. 1 Voltage Power consumption	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \pm 5 \% \\ & 22 \mathrm{VA} \end{aligned}$

1) Factory setting
) Control function is locked for 45 seconds.
) At $+23^{\circ} \mathrm{C}$ ambient temperature and 1100 N nominal load
) $\mathrm{AWG}=$ American wire gauge .
2)

Connection diagrams

Connection diagrams

AC / DC 24 V

Y1 actuator
N1 controller
F1 frost protection thermostat

[^1]
Connection terminals

DC 0...10 V AC / DC 24 V
DC $4 . . .20 \mathrm{~mA}$

G- Fail-safe function (system potential)
G 0

with AC 230 V module ASP1.1

AC 230 V	$L 1$ L 2 N 21

$\mid \mathrm{U}-$ Position feedback DC $0 \ldots 10 \mathrm{~V}$
$\mathrm{Yi}-$ Positioning signal DC $4 \ldots .20 \mathrm{~mA}$
$\mathrm{Yu}-$ Positioning signal DC $0 \ldots .10 \mathrm{~V}$

1) Connect either G1 or G; or L1 or L2. Refer to the description at "Positioning signals Yu and Yi", page 4 for additional details.

3-position AC / DC 24 V

With AC 230 V module ASP1.1
AC 230 V

L1-AC 230 V , acting direction: Actuator stem extends, PICV fully closed $(0 \%)^{1)}$	
L2	- AC 230 V , acting direction, Actuator stem retracts, PICV fully open $(100 \%)^{\text {1) }}$
N	
21	Neutral

U
Yi
Yi - Position feedback DC $0 \ldots 10 \mathrm{~V}$
Yu

${ }^{1)}$ Refer to the description at "3-position control signal", page 3 for additional details.

All dimensions in mm

-	$>100 \mathrm{~mm}$	Minimum mounting distance to wall or ceiling, for mounting,
$->200 \mathrm{~mm}$	connection, operation, maintenance etc.	

Revision numbers

Type	Revision number	Type	Revision number
SQV91P30	A	SQV91P40	A

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231

Ангарск (3955)60-70-56
Архангельск (8182)63-90-72
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Благовещенск (4162)22-76-07
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Владикавказ (8672)28-90-48
Владимир (4922)49-43-18
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395)279-98-46 Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Коломна (4966)23-41-49
Кострома (4942)77-07-48
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курган (3522)50-90-47
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12
Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Ноябрьск(3496)41-32-12

Калининград (4012)72-03-81
Калуга (4842) 92-23-67
Кемерово (3842)65-04-62
иров (8332)68-02-04 Коломна (4066)23-41-49 Кранода (861)203-40-90 Красноярск (391)204-63-61

Курган (3522)50-90-47
урск (4712)77-13-04
Липецк (4742)52-20-81
агнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Ноябрьск(3496)41-32-12

Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Петрозаводск (8142)55-98-37
Псков (8112)59-10-37
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саранск (8342)22-96-24
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17
Тамбов (4752)50-40-97
Тверь (4822)63-31-35
Тольятти (8482)63-91-07
Томск (3822)98-41-53
Тула (4872)33-79-87
Тюмень (3452)66-21-18
Улан-Удэ (3012)59-97-51
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Чита (3022)38-34-83
Якутск (4112)23-90-97
Ярославль (4852)69-52-93

[^0]: ${ }^{1)}$ When using the AC 230 V module ASP1.1.

[^1]: Y1 actuator
 N1 controller
 F1 frost protection thermostat

