SIEMENS

2-ходовые седельные клапаны с фланцем, PN 25

VVF52...

- Корпус клапана из чугуна EN-GJS-400-18-LT
- DN 15...40
- k_{vs} 0.16...25 м³/ч
- может оснащаться электрогидравлическими SKD...- / SKB... или электромоторными приводами SQX-

Применение

Для систем центрального отопления, вентиляции и кондиционирования воздуха в качестве управляющего или защитного отсечного клапана в соответствии с DIN 32730.

Для открытых и закрытых контуров (средняя кавитация, см. стр. 6). Бескремниевые клапаны имеют индекс ...М.

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.acvatix.nt-rt.ru || эл. почта: atv@nt-rt.ru

Тип	DN	k_{vs} [м ³ /ч]	S _v		
VVF52.15-0.16		0.16			
VVF52.15-0.2		0.2			
VVF52.15-0.25		0.25			
VVF52.15-0.32		0.32			
VVF52.15-0.4		0.4			
VVF52.15-0.5		0.5			
VVF52.15-0.63		0.63			
VVF52.15-0.8	15	0.8	50100		
VVF52.15-1		1			
VVF52.15-1.25		1.25			
VVF52.15-1.6		1.6			
VVF52.15-2		2			
VVF52.15-2.5		2.5			
VVF52.15-3.2		3.2			
VVF52.15-4		4			
VVF52.25-5		5			
VVF52.25-6.3	25	6.3			
VVF52.25-8	25	8			
VVF52.25-10		10	100200		
VVF52.40-12.5		12.5	100200		
VVF52.40-16	40	16			
VVF52.40-20	40	20			
VVF52.40-25		25			

DN = номинальный размер

Высокопроизводите **льные** версии

Тип	Индекс типа	Описание	Пример
VVF52A	А	Уплотнительный сальник с муфтой РТFE для температур до 180°C	VVF52.15-2.5A
VVF52G	G	Уплотнительный сальник с муфтой РТFE для пара с температурой до 180°C, для k _{vs} ≥ 1.25 м³/ч	VVF52.15-3.2G
VVF52M	М	Уплотнительный сальник с муфтой РТFE, бескремниевая версия, для температур до 180°C	VVF52.25-6.3M

Дополнительные устройства

Тип	Описание
ASZ6.5	Электрический нагревательный элемент штока, AC 24 V / 30 W, для среды с температурой ниже 0 °C

Заказ

В заказе указывайте количество, наименование и тип продукции.

Пример:

2 2-ходовых клапана VVF52.15-0.25

Комплектность

Клапаны, приводы и принадлежности упаковываются и поставляются отдельно. Клапаны поставляются без контрфланцев и фланцевых уплотнений.

Запасные части

См. обзор, раздел "Запасные части", страница 12

 k_{vs} = номинальная скорость потока холодной воды (5...30 °C) через полностью открытый клапан (H_{100}) при перепаде давления в 100 kPa (1 bar)

 $S_v =$ диапазон изменений k_{vs} / k_{vr}

 $^{{\}bf k}_{\mbox{\tiny vr}}$ = наименьшее значение ${\bf k}_{\mbox{\tiny v}}$, при котором можно поддерживать припуски текучести при перепаде давления в 100 kPa (1 bar)

Клапаны	_	Приводы									
		SQX 1)		SKD	1) 2) 3)	SKB 2) 3)					
	H ₁₀₀	Δp_{max} Δp_{s}		Δp_{max}	Δp_s	Δp_{max}	Δp_s				
	[MM]			[kF	Pa]						
VVF52.15		1600	2500	4000	2500		2500				
VVF52.25	20	1200	1500	1600	2250	1600					
VVF52.40		400	500	700	750		2000				

- 1) используется при максимальной температуре среды 150 °C
- используется также вместе со специальной версией G для насыщенного / перегретого пара
- вместе с приводами SKD... или SKB..., двухходовые клапаны VVF52... имеют сертификацию TÜV, утвержденную DIN 32730, и могут использовать в качестве защитных стопорных клапанов для пара и горячей воды при условии, что не будут превышены определенные значения температуры или давления.

Н₁₀₀ = номинальный ход

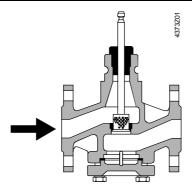
 Δp_{max} = максимально допустимый перепад давления в клапане, распространяющийся на весь диапазон хода клапана с электродвигателем

 Δp_s = максимально допустимый перепад давления, при котором клапан с электродвигателем будет закрываться при определенном давлении (давлении закрытия).

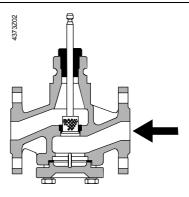
Обзор приводов

Тип	Тип Рабочее Си		Сигнал	Пружин.	Время	Усилие	Специф
	привода	напряжение	позиционир.	возвр.	позиционир.	позиционир.	икация
SQX32.00		A C 220 V			150 c		
SQX32.03		AC 230 V	3-		35 c		
SQX82.00	электро-		позиционный	Нет	150 c	700 N	N4554
SQX82.03	моторный	AC 24 V			05 -		
SQX62			DC 010 V 1)		35 c		
SKD32.50				Нет	120 c		
SKD32.21		AC 230 V		-	30 c 120 c	1000 N	N4561
SKD32.51	Электро-		3-	Есть Нет			
SKD82.50	гидравли		позиционный				
SKD82.51	ческий			Есть			
SKD60		AC 24 V	DO 0 40 1/1)	Нет			114500
SKD62			DC 010 V 1)	Есть	30 c		N4563
SKB32.50				Нет			
SKB32.51		AC 230 V	3-	Есть			
SKB82.50	Электро-		позиционный	Нет	100		N4564
SKB82.51	гидравли			Есть	120 c	2800 N	
SKB60	ческий	AC 24 V	DO 0 40 1/1	Нет]		
SKB62			DC 010 V 1)	Есть			N4566

¹⁾ или DC 4...20 mA


Пневматические приводы

Более подробную информацию вы можете узнать в вашем местном представительстве или офисе компании.


Клапаны VVF52...G (для насыщенного / перегретого пара) не используются с пневматическими приводами.

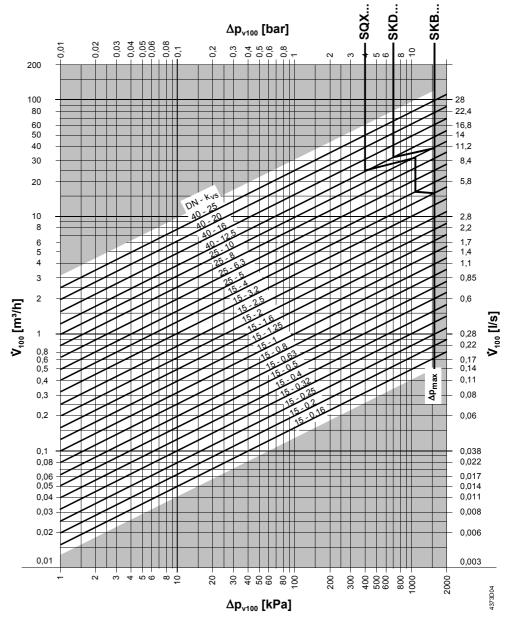
Поперечное сечение клапана

Стандартная версия VVF52...

Для охлажденной, охлаждающей, низко— и высокотемпературной горячей воды и воды с антифризом -20...150 °C

Специальная версия VVF52...G

Для насыщенного, перегретого пара с давлением до 600 kPa (6 bar) \leq 180 °C


В зависимости от номинального размера, непосредственно на шток клапана устанавливается перфорированная, щелевая или параболическая пробка с направляющими.

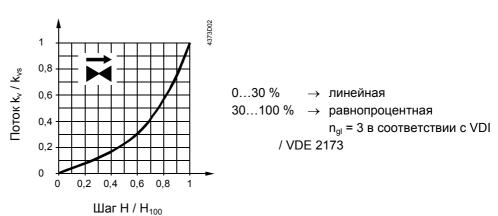
Седло прикручивается к корпусу клапана с помощью специального уплотнительного материала.

 \triangle

2-ходовый клапан не станет 3-ходовым, если убрать глухой фланец!

Схема

 Δp_{max} = максимальное допустимый перепад давления в клапане, распространяющийся на весь диапазон хода клапана с электроприводом

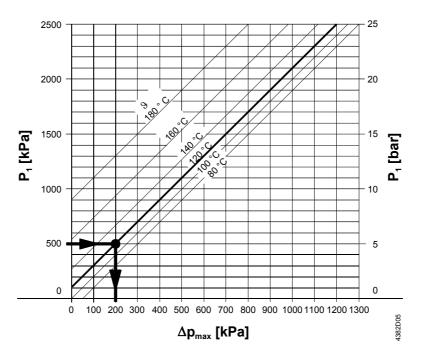

 Δp_{v100} = максимальное допустимый перепад давления в полностью открытом клапане и контрольном пути клапана при объёмном расходе V_{100}

 \dot{V}_{100} = объёмный расход при полностью открытом клапане (H₁₀₀)

100 kPa = 1 bar \approx 10 mWC

 $1 \text{ m}^3/\text{h}$ = 0.278 л/с при температуре воды 20 °C

Текучесть клапана



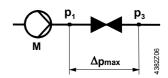
Кавитация

Кавитация ускоряет износ пробки и седла клапана, а также приводит к появлению шума. Кавитацию можно избежать, если не превышать значение перепада давления, показанное на схеме на стр. 5, и соблюдать значение статического давления, показанного ниже.

Замечания по охлажденной воде

Чтобы избежать кавитации в контурах охлажденной воды, обеспечьте противодавление на выходе клапана, т.е. отрегулируйте клапан после теплообменника. Выберите перепад давления в клапане по максимуму в соответствии с кривой 80 °C, показанной ниже на схеме.

 Δp_{max} = перепад давления в почти закрытом клапане, при


котором можно избежать кавитации

р₁ = статическое давление на входе

р₃ = статическое давление на выходе

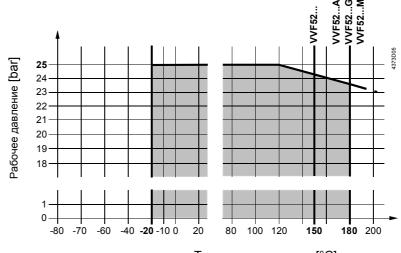
М = насос

9 = температура воды

Пример высокотемпературной горячей воды:

Давление p_1 на входе клапана: 500 kPa (5 bar)

Температура воды: 120 °C

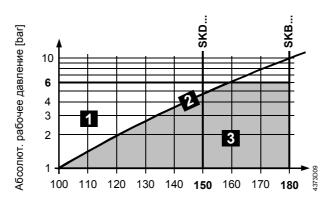

На приведенной выше схеме можно увидеть, что клапан практически закрыт, и максимально допустимый перепад давлений Δp_{max} составляет 200 kPa (2 bar).

Пример охлажденной воды:

Охлаждение ключевой водой как пример недопущения кавитации:

Охлажденная вода = 12 °C p_1 = 500 kPa (5 bar) p_4 = 100 kPa (1 bar) (атмосферное давление) Δp_{max} = 300 kPa (3 bar) $\Delta p_{\text{3-3}}$ = 20 kPa (0.2 bar) Δp_{D} (дроссель.) = 80 kPa (0.8 bar) p_3 ' = давление после потребителя в kPa

Рабочее давление и температура среды



Температура среды [°С]

Рабочее давление и температуре среды в соответствии с ISO 7005

Соблюдайте местное законодательство.

Насыщенный пар Перегретый пар

< 180 °C VVF52...G

Температура среды [°С]

1	влажный пар	Не допускать
2	насыщенный пар	Допустимый диапазон
3	перегретый пар	допустимый диапазон

Рекомендация

В случае с насыщенным и перегретым паром перепад давления Δp_{max} в клапане должен быть близок к критическому коэффициенту давления.

Коэффициент давления =
$$\frac{p_1 - p_3}{p_1} \cdot 100\%$$

 $p_1 \; = \;$ абсолютное давление перед клапаном в kPa

 $p_3 =$ абсолютное давление после клапана в kPa

Расчет значения k_{vs} для пара

Докритический диапазон

$$\frac{p_{_1}-p_{_3}}{p_{_1}}\!\cdot\!100\%<42\%$$

Коэффициент давления < 42% докритического значения

$$k_{vs} = 4.4 \cdot \frac{\dot{m}}{\sqrt{p_3 \cdot (p_1 - p_3)}} \cdot k$$

Сверхкритический диапазон

$$\frac{p_{_1}-p_{_3}}{P_{_1}}\cdot 100\% \geq 42\%$$

Коэффициент давления $\geq 42\%$ сверхкритического значения (не рекомендуется)

$$k_{vs} = 8.8 \cdot \frac{\dot{m}}{p_{_1}} \cdot k$$

 \dot{m} = количество пара в кг/ч

 $k = коэффициент перегрева пара = 1 + 0.0012 \cdot \Delta T (k = 1 для насыщенного пара)$

 ΔT = перепад давления в K насыщенного и перегретого пара

Пример

дано насыщенный пар 151.8 °C

> = 500 kPa (5 bar)m = 460 kg/h

коэффициент давления = 30 %

Найти k_{vs}, тип клапана

Решение

$$p_3 = p_1 - \frac{30 \cdot p_1}{100}$$

$$p_3 = 500 - \frac{30.500}{100} = 350 \text{ kPa } (3.5\text{bar})$$

$$k_{\rm vs} = 4.4 \cdot \frac{460}{\sqrt{350 \cdot (500 - 350)}} \cdot 1 = 8.83 \ m^3 \, / \, h$$

OTBET $k_{vs} = 10 \text{ m}^3/\text{h} \Rightarrow VVF52.25-10G$

насыщенный пар 151.8 °C

= 500 kPa (5 bar) p_1 m = 460 kg/h

коэффициент давления = 42 % (допускается сверхкритическое)

 k_{vs} , тип клапана

$$k_{vs} = 8.8 \cdot \frac{460}{500} \cdot 1 = 8.09 \text{ m}^3 / \text{h}$$

$$k_{vs} = 8 \text{ m}^3/\text{h}$$
 \Rightarrow VVF52.25-8G

Примечания

Технические

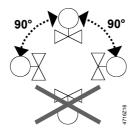
Мы рекомендуем делать установку в обратном трубопроводе, поскольку температура в данной трубе ниже для отопительных систем, что, в свою очередь, увеличивает срок службы уплотнительного сальника.

При открытых контурах есть риск заедания пробки клапана из-за отложения накипи. В таких случаях используйте самые мощные приводы SKD... или SKB.... Кроме того, его необходимо включать два-три раза в неделю необходимо. На входе клапана должен быть установлен фильтр

Обеспечьте отсутствие кавитации - см. стр. 6.

Для повышения надежности клапана мы рекомендуем устанавливать фильтр на входе клапана даже в закрытых контурах.

Если температура среды ниже 0 °C, используйте электрический нагревательный элемент штока ASZ6.5 для предотвращения замораживания штока клапана в уплотнительном сальнике. В целях безопасности нагревательный элемент штока использует рабочее напряжение AC 24 V / 30 W.


При использовании данных клапанов для пара необходимо учитывать определенные параметры: см. схему на стр. 7 и «Технические данные» на стр. 10!

По монтажу

Установка клапана и привода достаточно проста: для этого не нужны специальные инструменты и нет необходимости в проведении каких-либо процедур настройки.

Клапан поставляется вместе с Инструкциями по монтажу 74 319 0509 0.

Ориентация

Направление потока

Во время монтажа обратите внимание на символ направления потока на клапане

→.

VVF52... → Стандартное

направление действия: закрывается против давления

VVF52...G ← Паровое

направление действия: закрывается по давлению

Ввод в эксплуатацию

Ввод клапана в эксплуатацию производится только при правильном его монтаже.

Шток клапана заходит: клапан открывается = поток увеличивается Шток клапана выдвигается: клапан закрывается = поток уменьшается

Техническое обслуживание

Внимание

Клапаны VVF52... не требуют технического обслуживания.

Во время выполнения сервисных работ с клапаном / приводом:

- отключите насос и выключите электропитание
- закройте стопорные клапана
- полностью устраните давление в трубопроводной системе и дождитесь охлаждения труб

При необходимости отключите электрические провода.

Перед тем, как клапан снова начнет работать, убедитесь, что привод правильно установлен.

Уплотнительный сальник штока

Сальники можно поменять без снятия клапана, если в трубах нет давления, они полностью охладились, а поверхность штока не имеет повреждений. Если шток поврежден в зоне сальника, замените весь блок шток-пробка. Обратитесь в местное представительство компании.

Утилизация

Перед утилизацией клапана, он должен быть разобран и разделен по составному материалу. По законодательству или с точки зрения защиты окружающей среды может потребоваться специальная утилизация отдельных компонентов.

Необходимо строго соблюдать местные и другие действующие законодательные нормы.

Гарантия

Достижение технических показателей гарантируется только при использовании вместе с приводами Сименс, указанными в разделе «Комбинации оборудования». Все условия гарантии будут недействительны при использовании приводов других производителей.

Технические данные

Функциональные данные	PN класс	PN 25 в соотв. с ISO 7268					
•	Рабочее давление	В соотв. с ISO 7005 в пределах диапазона					
		допустимых значений температуры согласно схеме,					
		изложенной на стр. 7					
	Текучесть 030 %	• линейная					
	30100 %	• равнопроцентная; n _{ql} = 3 в соотв. с VDI / VDE 2173					
	Скорость утечки	00.02 % от значения k _{vs} в соотв. с DIN EN 1349					
	Допустимая среда: вода	охлаждающая вода, охлажденная вода,					
		низкотемпературная горячая вода,					
		высокотемпературная горячая вода, вода с					
		антифризом;					
		рекомендация: очистка воды в соотв. с VDI 2035					
	Соленая вода						
	пар	насыщенный пар, перегретый пар;					
		сухость на входе не менее 0.98					
	термомасла	(используйте только клапаны с индексом А или М)					
	Температура среды ¹⁾	Не более 150 °C (180 °C)					
	вода, сол. вода ²⁾	-20150 °C (180 °C)					
	насыщенный пар	≤ 180 °C ≤ 600 kPa (6 bar)					
	перегретый пар	≤ 180 °C ≤ 600 kPa (6 bar)					
		допустимая температура и диапазон давления в					
		соотв. со схемой на стр. 7					
	термомасла	≤ 180 °C (используйте только клапаны с индексом А					
	или M)						
	Диапазон изменений $S_{\scriptscriptstyle V}$	DN 15: 50100					
		DN 2540: 100200					
	Номинальный ход	20 мм					
Промышленные стандарты	Директива «Оборудование, работающее под давлением»	PED 97/23/EC					
	Дополнительные устройства, работающие под давлением	в соотв. со статьей 1, разделом 2.1.4					
	Группа жидкости 2	Без маркировки СЕ в соотв. со статьей 3, разделом 3					
	.,	(надлежащая инженерно-техническая практика)					
Материалы	Корпус клапана	чугун с шаровидным графитом EN-GJS-400-18-LT					
·	Шток	нержавеющая сталь					
	Седло, пробка	нержавеющая сталь					
	Уплотнительный сальник ³⁾	Стандартная версия: латунь бескремниевая					
		Специальная версия: нержавеющая сталь					
	Уплотнительные материалы ³⁾	Стандартная версия: кольцевые уплотнения EPDM, бескремниевые					
		Специальная версия:					
		VVF52A: муфты PTFE					
		VVF52G: муфты PTFE					
		VVF52М: муфты РТFE, бескремниевые					
Размеры / Вес	См. «Размеры»	V 1					

¹⁾ При температуре 150...180 °C используйте специальную версию с индексом A, G или M. Используйте электрогидравлические приводы SKB....
2) Электрический нагревательный элемент штока ASZ6.5 для температуры среды ниже 0 °C.
3) Бескремниевая версия для температуры 180 °C с индексом М.

Размеры в мм

DN	В	D	D2	D4	ĸ	L1	L2	L3	Н1	H2		Н		kg
		Ø	Ø	Ø							SQX	SKD	SKB	[kg]
15	16	95	4.4.(4:-)	46	65	130	65	69	0.4	100 5	. 400	. 504		4.3
25	18	115	14 (4x)	65	85	160	80	73	64	160.5	> 489	> 564	> 639	5.8
40	20	150	19 (4x)	84	110	200	100	97.5	57	153.5	> 482	> 557		8.9

DN = номинальный размер

H = общая высота привода плюс минимальное расстояние до стены или потолка для монтажа, подсоединения, эксплуатации, обслуживания и т.д.

Н1 = размер от центра трубы для установки привода (верхний край)

H2 = клапан в положении «Closed» (Закрыто) означает, что шток полностью выдвинут

Номера запасных частей

	Уп	лотнительный сальни	Набор	
	4373203		4382205	Пробка со штоком, стопорным кольцом, уплотнением
Клапан	VVF52	VVF52A, VVF52G	VVF52M	VVF52, VVF52G, VVF52M, VVF52A
VVF52.15-0.16	4 284 8806 0	4 284 8829 0	4 284 9538 0	
VVF52.15-0.2	4 284 8806 0	4 284 8829 0	4 284 9538 0	
VVF52.15-0.25	4 284 8806 0	4 284 8829 0	4 284 9538 0	Для этих клапанов замена пробки не
VVF52.15-0.32	4 284 8806 0	4 284 8829 0	4 284 9538 0	возможна
VVF52.15-0.4	4 284 8806 0	4 284 8829 0	4 284 9538 0	
VVF52.15-0.5	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0142 0
VVF52.15-0.63	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0143 0
VVF52.15-0.8	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0144 0
VVF52.15-1	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0145 0
VVF52.15-1.25	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0146 0
VVF52.15-1.6	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0147 0
VVF52.15-2	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0148 0
VVF52.15-2.5	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0149 0
VVF52.15-3.2	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0150 0
VVF52.15-4	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0151 0
VVF52.25-5	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0133 0
VVF52.25-6.3	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0138 0
VVF52.25-8	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0134 0
VVF52.25-10	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0139 0
VVF52.40-12.5	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0117 0
VVF52.40-16	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0131 0
VVF52.40-20	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0118 0
VVF52.40-25	4 284 8806 0	4 284 8829 0	4 284 9538 0	74 676 0132 0

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93